Кнопка включения ноутбука схема

Содержание

Включение ноутбука — способы запуска питания

Кнопка включения ноутбука схема

Кнопка питания на ноутбуке, как любой из компонентов, может выйти из строя. Включить ноутбук без активации кнопки включения вполне возможно, но для этого нужно провести кое-какие усовершенствования устройства. В этой инструкции будет рассмотрено, как правильно включать девайс и как запустить ноутбук без кнопки включения.

Инструкция по запуску питания на ноутбук

Почти на всех моделях современных ноутбуков клавиша включения расположена в левом верхнем углу корпуса, над клавиатурой. Рядом может быть установлена кнопка для быстрого запуска BIOS, которая обычно меньше размерами.

На некоторых ультракомпактных лэптопах и нетбуках вместо клавиши используется ползунок, который нужно пошевелить, чтобы включить питание. Перед тем как включить ноутбук убедитесь, что батарея установлена и/или подключен адаптер питания. После нажатия на кнопку дождитесь, пока устройство загрузит операционную систему. До этого не выключайте его, не отключайте адаптер и не вынимайте батарею.

Единственный правильный способ выключить лэптоп — нажать «Пуск» на рабочем столе или клавишу с логотипом Windows на клавиатуре и в нижней части открывшегося меню нажать кнопку «Завершение работы».

Все остальные способы — отключение с помощью клавиши питания или демонтаж аккумулятора, могут привести к поломке устройства. Допускается их использование только тогда, когда ноутбук зависнет и не будет реагировать на команды.

Диагностика проблем с питанием при запуске

Может быть и такое, что при активации кнопки включения девайс не реагирует на команду пользователя. Основные причины:

  • Кнопка сломалась.
  • Поврежден шлейф.
  • Батарея полностью разряжена.
  • Адаптер не подает напряжение на коннектор питания.

Подключите адаптер питания, если он отключен, и попробуйте запустить девайс. Если ноут включился, значит батарея полностью разрядилась или вышла из строя.

Такое часто случается через несколько лет эксплуатации — контроллер больше не определяет заряд АКБ или истощились ячейки батареи.

В таком случае придется менять батарею или использовать лэптоп как стационарный компьютер, который питается от адаптера.

Чтобы проверить работоспособность адаптера, можно воспользоваться мультиметром. Как правило, на выходе подается напряжение от 15 до 20 В. Это значение указано на самом адаптере. Красный штырь тестера (плюс) нужно вставить внутрь коннектора адаптера.

Черный приложите сверху на внешнюю металлическую часть. Мультиметр должен показать напряжение, равное или немного выше заявленного. Если напряжения нет, то блок питания неисправен.

Если кнопка питания вышла из строя или поврежден шлейф, то можно их отремонтировать или настроить ноутбук на включение с клавиатуры. Однако его все равно нужно будет как-то включить. Какие контакты нужно замкнуть для запуска ноутбука, вы можете найти в одном из следующих параграфов.

Как включить ноутбук, если не работает кнопка включения

Как сказано выше, в некоторых моделях портативных ПК предусмотрена специальная кнопка для быстрого запуска BIOS.

После ее активации девайс запускается почти как обычно, но вместо операционной системы запускает интерфейс управления вводом-выводом.

Чтобы загрузиться в Виндовс, достаточно закрыть БИОС без сохранения настроек. Он автоматически перезапустится и загрузит операционную систему.

Если кнопки для быстрого запуска БИОС нет, чтобы запустить его, перезапустите ноут и до загрузки ОС несколько раз нажмите кнопку F2, F10, Delete или Escape. Далее действуете по такому алгоритму:
  1. Перейдите в раздел Power on Function или Power On By PS2 KB/MS.
  2. Чтобы назначить на включение любую клавишу, в соответствующей графе установите значение Any Key.
  3. Для установки конкретной клавиши установите значение Hot Key и укажите, какую комбинацию клавиш нужно использовать для включения.
  4. Здесь же доступна активация компьютера с помощью мыши. Для этого установите соответствующее значение в графе Mouse Left/Right.

Также важно знать, что в современных ноутбуках вместо «классического» БИОСа может использоваться UEFI — графическая оболочка для более удобной работы. Ее преимущество в том, что обычно интерфейс переведен на язык региона, где продавался лэптоп, а управление доступно не только с клавиатуры, но поддерживаются и команды мышью. В таком случае все настройки изменяются в несколько кликов.

Запуск ноутбука через материнскую плату

Кнопка включения предназначена для того, чтобы замкнуть пару контактов на одном из коннекторов системной платы. То есть если сама кнопка или шлейф вышли из строя, замкнуть эти контакты можно другими способами. Учтите, что делать все описанное далее вы будете на собственный страх и риск. Если не уверены, что справитесь, лучше обратитесь в сервисный центр.

Итак, нужен коннектор, к которому подключается кнопка питания посредством шлейфа. Сложность в том, что моделей системных плат для ноутбука огромное количество, и такой коннектор может размещаться в любом месте. Самый рациональный вариант — найти документацию по вашему ноутбуку, где в числе прочего указана распиновка каждого коннектора на материнке.

Такая инструкция обычно идет в комплекте с устройством при его покупке. Если документ утерян, эти данные можно найти на официальном сайте производителя.

Чтобы добраться к интересующему нас коннектору, нужно разобрать ноутбук. Инструкцию, как именно это сделать, можно найти на Ютубе — там существует ряд каналов, посвященных именно этой тематике.

Нужные контакты маркированы PWR (питание) и Ground (земля). Если ноутбук собрать и замкнуть эти контакты, устройство можно включить.

Но в том-то и проблема, что девайс в разобранном состоянии и батарея демонтирована.

Что можно сделать? Подключить к этим контактам кнопку от стороннего производителя или какого-нибудь другого устройства. Лучше всего подходит кнопка от стационарного системного блока.

Если вы не нашли подходящую деталь, можно попросту припаять к контактам пару проводов и вывести их наружу, а к ним уже припаять любой подходящий переключатель.

Оптимальный вариант — обратиться в сервисный центр и заказать кнопку включения от вашей модели ноутбука. Отремонтировать сломанную кнопку очень сложно: конструкция у нее примитивная, и если выходит что-то из строя, то уже «с концами».

Можно попробовать починить шлейф, если причина неисправности в нем. Обычно поломка происходит в месте, где он вставляется в слот на кнопке или на системной плате.

Достаточно отрезать надломленный конец острым ножом, а затем снять слой изоляции на участке длиной полсантиметра. Снимите уплотнитель с отрезанной части и приклейте его суперклеем в месте, которое вы только что зачистили.

Это нужно, чтобы конец шлейфа держался в слоте подключения.

Заключение

Как видите, сломанная кнопка включения — не проблема: есть и другие спосмобы включить ноутбук. Конечно, это временные «костыли», использование которых не всегда удобно. Лучше все-таки заменить кнопку на рабочую,  чтобы иметь возможность включать лэптоп более привычным способом.

Источник: https://vsenotebooki.ru/nastroika/kak-vklyuchit-noutbuk-mozhno-li-zapustit-esli-knopka-vklyucheniya-ne-rabotaet

Диагностика и неисправности мультиконтроллера в ноутбуке

Кнопка включения ноутбука схема

В этой статье пойдет речь о микросхеме, которая управляет работой всего ноутбука, в том числе, его включением. Её неисправности приводят к значительным последствиям для пользователя и чаще всего требуют ремонта материнской платы в сервисе.

Задачи мультиконтроллера

Мультиконтроллером, или, по-английски Super I/O (SIO) или Multi I/O (MIO), на сленге «мультик» (еще в документации встречается EC-контроллер), называется микросхема, обеспечивающая мониторинг напряжений и температур, работу с периферийными устройствами.

Такими устройствами могут быть клавиатура, мышь, кнопка включения, датчик закрытия крышки и тп.

 Основным его предназначением является управление клавиатурой (даже в схемах он обозначается как KBC-контроллер), однако со временем производители начали нагружать его множеством дополнительных функций, таких, например, как индикация работы жесткого диска (светодиод на передней панели ноутбука) или управление частотой работы кулера.

 Именно на эту микросхему «приходят» все контактные дорожки шлейфа клавиатуры ноутбука. На самом деле на ножки мультиконтроллера приходят сигналы практически со всех устройств и микросхем ноутбука. Уровень сигнала может быть постоянный 3.3V (высокий логический уровень), либо изменяющийся в случае обмена данными (измеряется осциллографом).

В запуске ноутбука он вообще играет первостепенную роль, так как именно на него приходит сигнал с кнопки включения, и именно он запускает все источники напряжений и затем отдает сигнал южному мосту для начала инициализации.  

Мультиконтроллер управляет включением ШИМ-контроллеров, вырабатывающих необходимые для работы узлов ноутбука напряжения, ключами, коммутирующими эти напряжения.

Через мультиконтроллер по протоколу Firmware HUB или SPI подключена микросхема Flash c программным обеспечением (которую иногда приходятся прошивать).

В состав мультиконтроллера могут входить контроллеры часов реального времени, жестких дисков, USB, интегрированный аудиоинтерфейс, интерфейс LPC.

Разновидности мультиконтроллеров

Мультиконтроллеры выпускают следующие фирмы: ENE; Winbond; Nuvoton; SMCS; ITE; Ricoh.

Сильно отличаются только последние, хотя бы методом пайки, они BGA.

На современных мультиконтроллерах имеется по 128 ножек, но их назначение сильно отличатся в зависимости от модели мультиконтроллера и даже от его ревизии. К примеру, KB926QF-D2 и KB926QF-C0. — два совершенно разных мультиконтроллера.

Неисправности мультиконтроллеров и их симптомы

Мультиконтроллер часто выходит из строя при залитии ноутбука жидкостью или вследствие выгорания ключей, формирующих 3.3В. Второе случается при скачках питания в сети.

К основным симптомам неисправности мультиконтроллера можно отнести некорректную работу клавиатуры и тачпада и отсутствие запуска как такого. Также, следствием неправильной работы «мультика» являются и глюки периферии — неправильная работа датчиков, кулера. Также по вине SIO может не определяться жесткий диск и другие накопители (работа USB при этом завязана на южный мост).

В диагностике и ремонте ноутбуков мультиконтроллер имеет ключевое значение, поскольку отсутствие на мультиконтроллере важных сигналов, приходящих с микросхем ноутбука, позволяет выявить неисправные микросхемы и произвести их замену.

 На мультиконтроллер приходит LPC шина, по который идет обмен с южным мостом, и с которой можно считать всем известные POST-коды.

Для этого, кстати, в ремонте часто подпаиваются на прямую к ножкам мультиконтроллера тоненькими проводками и выводят коды на индикаторы. 

Также иногда во время самостоятельной замены матрицы ноутбука забывают отключить аккумулятор. Это тоже может привести к выгоранию мультиконтроллера.

Но, к счастью, микросхемы эти не очень дорогие и ремонт такой неисправности обходится дешевле, чем, например, замена южного моста или видео.

Многие микросхемы взаимозаменяемы, а перепайка их — 15 минут (если не потребуется прошивать флэш память).

Диагностика запуска (или отсутствия старта) ноутбука

Для правильной диагностики старта ноутбука необходимо понимать его последовательность и участие в нем мультиконтроллера.

Последовательность включения ноутбука

При включении ноутбука дежурное напряжение через кнопку подается на мультиконтроллер, который запускает все ШИМ-контроллеры, вырабатывающие все напряжения (их много), и, при нормальном исходе, вырабатывают сигнал PowerGood. По этому сигналу снимается сигнал RESET с процессора и он начинает выполнять программный код, записанный в BIOS с адресом FFFF 0000.

Затем BIOS запускает POST (Power-On Self Test), который выполняет обнаружение и самотестирование системы. Во время самотестирования обнаруживается и инициализируется видеочип, включается подсветка, определяется тип процессора.

Из данных BIOS определяется его тактовая частота, множитель, настройки. Затем определяется тип памяти, ее объем, проводится ее тестирование. После этого происходит обнаружение, инициализация и проверка подключенных накопителей – привода, жесткого диска, карт-ридера, флоппи дисковода и др.

, а после проверка и тестирование дополнительных устройств.

После завершения POST управление передается загрузчику операционной системы на жестком диске, который и загружает ее ядро.

Из описания выше видно, что мультиконтроллер вступает в работу на самой ранней стадии, и без его нормального запуска не сформируются управляющие напряжения. Вот условия, необходимые для того, чтобы мультиконтроллер дал команду на старт:

  1.  Основной BIOS и EC-BIOS должны быть рабочие.
  2. Мультиконтроллер запитан, работает его кварц и мульт вычитывает содержимое BIOS
  3. ACIN = 3.3 V
  4. LID_SW# = 3.3V (крышка ноутбука открыта)
  5. EC_RST# = 3.3V (мульт снимает RESET с южного моста)
  6. Южный мост снимает сигналы PM_SLP_S3# и SLP_S5#, то есть, на них устанавливается 3.3V
  7. При нажатии кнопки включения сигнал ON/OFTN# падает до нуля и этот же сигнал транслируется в PBTN_OUT#

Для инициализации мультиконтроллера необходима микропрограмма, которая хранится либо в той же микросхеме флеш-памяти, что и прошивка BIOS (UEFI), либо в отдельной микросхеме меньшего объема, либо внутри самого мультиконтроллера.

В первых двух случаях восстановить прошивку не представляется сложным. А вот прошить непосредственно мультиконтроллер пока могут не любые программаторы. Да и подключиться к нужным его выводам не всегда просто.

Прошиваемые мультиконтроллеры — NPCE288N/388N, KB9010/9012/9016/9022, IT8585/8586/8587/8985/8987.

Лучше всего найти документацию и описание сигналов по мультикам IT, которые используются во многих бюджетных ноутбуках, в том числе ASUS и Dell.

Благодаря схемам можно понять и отследить, где находятся выше указанные сигналы.

Например, в случае IT8752 и аналогичных (используется, например, в семействе ASUS K40 и K50) для диагностики вас должны интересовать, помимо выше указанных, следующие сигналы на мультике:

  • ALL_SYSTEM_PWRGD (68 мульт)
  • SUS_PWRGD (67 мульт)
  • VRM_PWRGD (1 ISL6262) Входящие сигналы указывают на выработку сигнала PowerGood и наличие питания Suspend режима и питания на VRM регуляторе ISL6262. Это значит, мост и процессор запитаны.
  • Сигналы  H_CPURST#_XDP и H_PWRGD_XDP разрешают работу процессора.
  • PWR_SW# — сигнал с кнопки включения
  • CPU_VRON — включения питания на CPU
  • PM_RSMRST# — снимает RESET с моста
  • PM_SUSB# — хаб PCH должен выдать сигналы PM_SUSC# и PM_SUSB# идущие на мульт, а мульт в ответ выдать сигналы SUSC_EC# и SUSB_EC#
  • PM_PWROK — сигнал на хаб, что питание в норме
  • PM_CLKRUN# — сигнал на запуск тактирования
  • PM_PWRBTN# — сигнал на включение южного моста
  • VSUS_ON — сигнал включения дежурного питания на силовых ключах
  • EC_CLK_EN (CLK_EN#) — разрешение тактирования на южный мост

Питание на IT85xx мульты поступает следующее: +3VA_EC, +3VPLL, +3VACC, без них микросхема не запустится.

Последовательность диагностики мультиконтроллера

Рассмотрим схему последовательности включения ноутбука:

Процедура включения материнской платы

Для диагностики в целом, вам нужно рассмотреть две ситуации:

1. Питание не появляется, светодиод питания не горит.

Ищем неисправность в схеме управления питанием. Проверяем 19 V со входа , приходящие на микросхему зарядки (charger), например, MAX. Проверяем наличие дежурных напряжений +3VSUS и т.п.

Через форфмирователи +3 V питание поступает на мультик — проверяем это питание на входе. Проверяем выходные сигналы мультика. В некоторых случаях слетает прошивка микроконтроллера.

В этом случае, при наличии входных напряжений, нужные управляющие сигналы с микросхемы контроллера не формируются при нажатии кнопки питания.

2. Питание есть, светодиод питания горит, но ноутбук не включается, экран темный. Индикатор жесткого диска сначала включается и гаснет, затем не горит.

Очевидно, мультик работает, управляющие сигналы формируются, однако, дальнейший запуска не происходит или он обрывается. Чаще всего виноваты в этом микросхемы чипсета, сам процессор или тактирующие генераторы, которые срывают генерацию сигналов.

Для быстрой диагностики прогреваем микросхемы чипсета по-очереди. После каждого прогрева пробуем на включение. Если ноутбук включается, то виноват конкретный чип. Очень важна предыстория поломки — например, если до поломки перестали работать USB порты, то скорее всего вышел из строя южный мост.

Если были артефакты на встроенном видео, то виноват северный мост.

Если же мы видим, что питающие напряжения присутствие, а сигналы с мультика нет (например, не снимается сигналы RESET), то изучаем все сигналы более подробно.

Вот обобщенный порядок следования сигналов при запуске EC:

исходящий сигнал

CLK_PWRGD с юга приходит на тактовый генератор
-> сигнал PWROK на юг
-> юг отдает процу сигнал H_PWRGD (HardWare PWRGD, все питания в порядке, следующий этап инициализации)
-> юг снимает ресет с севера PLT_RST#
-> юг снимает ресет с PCI шины PCI_RST#
-> север снимает ресет с процессора HCPU_RST#

Источник: https://itprospb.ru/2018/09/diagnostika-i-neispravnosti-multikontrollera-v-noutbuke/

Формирование напряжений и сигналов запуска ноутбука

Кнопка включения ноутбука схема

Форма входа

Друзья сайта

Сейчас на сайте
BoaSoft, aze1959, FGA, milcin68, IVAN006, Владислав, boscolo, SnakeEyesInc, Arturjonis, vano, Geman, alneg, korvv1986, andreas888, Zouran, Jory, rammer, Mwuffak, Serge7, aleksandr76735, vacos, holodilschik, dma, enigmatic999, Batigol, abderrahmen1985, doubovitski, Deminamdm, alexskey, chebanyura, archibald65, АНАТОЛИЙО, stefanel1989, 0leg777, boris-gorbunkovv, shahzod6555, ColonelTY, Tokamak, G67985, artu, vet-vasilij
Партнёры проекта
Приветствую Вас, Гость · RSS02.01.2021, 00:08:25
» Статьи » Статьи » Компьютеры и Периферия
Формирование напряжений и сигналов запуска ноутбука Предисловие: Посмотрев видео на просторе интернета про формированию сигналов и напряжению ноутбука, на примере платы LA-B102P, решил написать статью, в которой много чего узнает интересующийся читатель. И так начнем с самого основного на мой взгляд , те разновидность напряжений и сигналов. Они делятся на две основные категории, то что образуется до нажатия кнопки, и то что после нажатия кнопки питания ноутбука. Рассмотрим по шагам: 1) 1- 11 шаги Always on (перевод Постоянно включен Напряжения которое появляется до включения кнопки питания) 2) 12-35 шаги After Power on Switch (перевод После включения питания) напряжения с сигналами которые появляются после нажатия кнопки включения ). Рассмотрим плату ноутбука и найдем основное входное напряжение так называемое Vin рис1 оно и будет у нас первым шагом в нашей группе Always on, это напряжение ка вы поняли подается с блока питание ноутбука. Следующим напряжением является в нашей под категории выше уже сказанной вторым шагом BATT+. Это напряжение сформированное схемой заряда на микросхеме PU301 и ключей PQ310 и PQ312, для зарядки аккумулятора, ниже показанное на рис1. рис 1 Следующий третий шаг напряжение сформированное 2 ключами PQ301, PQ302, и Pq303 в зависимости от чего питается ноутбук, B+ это основное высокое напряжение с него формируются все остальные напряжения, которое подается на шим преобразователи основных питателей. рис 2 Так рассматриваем дальше, и на четвертом шаге у нас напряжение +RTCVCC, сформированное с помощью JBATT1, PR105, PD101, R711, те с помощью часовой батарейки. рис 3 Следующий пятый шаг +3LVP это напряжение сформировано с помощью PU401, вывод (5), название вывода LDO (low drop out перевод малое падение напряжения те линейный стабилизатор с малым выходным падением напряжения). Как оно сформировалось: после появление напряжения B+ прошедшее через PL401 появляется на выводе 8 PU401, тем самым через внутренний линейный стабилизатор уже формируется напряжение +3VLP(я предполагаю, что сигнал+3VLP производители сократили из таких слов +3V LDO POWER ). Это напряжение поступает на вывод 111 показан на рис 4 с названием EC_VDD0 микросхемы U28 . Она является (Embedded Controller-встроенный контроллер ) дальше EC отвечающая за запуск ноутбука , периферию и мониторинг. EC при подаче напряжения запускает свою внутреннюю прошивку и формирует запускающие сигналы, один из них, те шестой шаг EC_ON через резистивный делитель PR406 и PR409 формирует сигнал 3V5V_EN для запуска PU401 и Pu402, которые формируют седьмой и восьмой шаги это +3VALW +5VALW(я предполагаю, что производители сократили название это +3V Always +5V Always ) рис 4 Дальше в формирование последующих шагов напряжений вступает 3V/5VALW_PG, сформированное с помощью PU401 вывод (2). Это напряжение запускает шаг девять ШИМ контроллер PU602 через резистор PR607. На выводе 10(LX)PU602 через катушку PL603 и перемычку PJ603 формируется +1.0VALW. Также в шаге десять тоже участвует 3V/5VALW_PG запускающее ШИМ контроллер PU601через резистор PR604. На выводе 3 (LX)PU601 через катушку PL601 и перемычку PJ602 формируется +1.8VALW. Все это показано на рис 5. рис 5 Следующий одиннадцатый шаг ON/OFF# это вывод 114 EC и вывод 4 JPWRB1.Сигнал приходящий от кнопки включения питания ноутбука с активным низким уровнем приходит на эти выводы рис 6. рис 6 Вот мы и закончил первую группу напряжений которая называется как выше было сказано Always on. А теперь в таблице ниже повторим их: Переходим к второй подгруппе напряжений как сказано выше After Power on Switch, это те напряжения которые появляются после нажатия кнопки питания, шаг 12 в общем списке и первый во второй подгруппе After Power on Switch напряжений, сигнал EC_RSMRST# (Embedded Controller resume reset) вывод 100 EC. Активный сигнал 0 что свидетельствует значок #, когда он равен 0 то PMC (Power Management Controller-контроллер питания) процессора сброшен. При нажатии на кнопку питания ноутбука EC_RSMRST# переходит в режим 1 равный 3.3v, переводит PMC процессора в рабочий режим. Все это показано на рис. 7. рис. 7 Следующий сигнал 13 в общем списке и второй в подгруппе After Power on Switch напряжений PBTN_OUT# (power booton out-выход сигнализирующий о нажатии кнопки питания ) активный уровень 0. При нажатии кнопки питания переходит в 0 и возвращается в 1. Поступает из вывода 122 на вывод процессора J26PMC_PWRBTN# через R1058 0 Om.Как показано на рис. 8рис. 8 Продолжаем, следующий сигналы 14 и 15 в общем списке а также третий и четвертый в подгруппе After Power on Switch напряжений PMC_SLP_S4#(Power Management Controller sleep state 4выход контроллера питания в ACPI условие 4 )и PMC_SLP_S3#(Power Management Controller sleep state 4выход контроллера питания в ACPI условие 3 ) активные уровни 1 для рабочего состояния работы ноутбука.рис. 9рис. 9 Давайте вспомним ACPI-(Advanced Configuration and Power Interface- усовершенствованный интерфейс управления конфигурацией и питанием). Имеет глобальные состояния: G0(S0) (Working) — нормальная работа, (полностью работает, все напряжения присутствуют). S1 («Power on Suspend» (POS) в BIOS) — состояние, при котором все процессорные кэши сброшены и процессоры прекратили выполнение инструкций. Однако питание процессоров и оперативной памяти поддерживается; устройства, которые не обозначили, что они должны оставаться включенными, могут быть отключены; S2 — более глубокое состояние сна, чем S1, когда центральный процессор отключен, обычно, однако, не используемое; S3 («Suspend to RAM» (STR) в BIOS, «Ждущий режим» («Standby») в версиях Windows вплоть до Windows XP и в некоторых вариациях Linux, «Sleep» в Windows Vista и Mac OS X, хотя в спецификациях ACPI упоминается только как S3 и Sleep) — в этом состоянии на оперативную память (ОЗУ) продолжает подаваться питание, и она остаётся практически единственным компонентом, потребляющим энергию. Так как состояние операционной системы и всех приложений, открытых документов и т. д. хранится в оперативной памяти, пользователь может возобновить работу точно на том месте, где он её оставил — состояние оперативной памяти при возвращении из S3 то же, что и до входа в этот режим. (В спецификации указано, что S3 довольно похож на S2, только чуть больше компонентов отключаются в S3.) S3 имеет два преимущества над S4: компьютер быстрее возвращается в рабочее состояние, и, второе, если запущенная программа (открытые документы и т. д.) содержит конфиденциальную информацию, то эта информация не будет принудительно записана на диск. S4 («Спящий режим» (Hibernation) в Windows, «Safe Sleep» в Mac OS X, также известен как «Suspend to disk», хотя спецификация ACPI упоминает только термин S4) — в этом состоянии всё содержимое оперативной памяти сохраняется в энергонезависимой памяти, такой, как жёсткий диск: состояние операционной системы, всех приложений, открытых документов и т. д. Это означает, что после возвращения из S4 пользователь может возобновить работу с места, где она была прекращена, аналогично режиму S3. Различие между S4 и S3, кроме дополнительного времени на перемещение содержимого оперативной памяти на диск и назад, — в том, что перебои с питанием компьютера в S3 приведут к потере всех данных в оперативной памяти, включая все не сохранённые документы, в то время как компьютер в S4 этому не подвержен. S4 весьма отличается от других состояний S и сильнее S1-S3 напоминает G2 Soft Off и G3 Mechanical Off. Система, находящаяся в S4, может быть также переведена в G3 Mechanical Off (Механическое выключение) и все ещё оставаться в S4, сохраняя информацию о состоянии так, что можно восстановить операционное состояние после подачи питания. G2 (S5) (soft-off) — мягкое (программное) выключение; система полностью остановлена, но под напряжением, готова включиться в любой момент. Влияние условий на состояния показано на рис 10.рис 10 Если кратко с выше сказанного и условий таблицы то ,когда оба сигнала SLP_S3# и SLP_S4# ,в состоянии HI. то плата ноутбука в рабочем состоянии S0 (полностью работает, все напряжения присутствуют). Также в некоторых схемах вместо PMC_SLP_S3# и PMC_SLP_S4# может быть указано PM_SUSB#, PM_SUSC# те: PMC_SLP_S3#=PM_SUSB#, PMC_SLP_S4#=PM_SUSC#PM_SUSC# (Power Management Suspend Plane C Control) PM_SUSB# (Power Management Suspend Plane B Control ) Давайте разберемся откуда эти сокращения, все это идет с прошлого, когда использовалась для построения схем архитектура южного и северного мостов, те чипсет (набор микросхем) состоял из Northbri dge северного моста который находился ближе к процессору (как на земном шарике в верху север в низу юг ) и Southbridg южный мост, тот который отвечал за периферию. Все это показано ниже на рис 10. Далее если мы возьмем дата шит любого южного моста к примеру VT8237 и найдем таблицу описания выводов, то найдем следующее: Что обозначает: SUSB#Power Management Suspend Plane B Control-power management STR and STD suspend states. STR -Suspend to RAM STD-Suspend to DISk. Если посмотреть выше в статье где говорилось о состояния питания то мы увидим S3 «Suspend to RAM» SUSC#Power Management Suspend Plane C Control-power management STD suspend state S4-«Suspend to disk». Вот поэтому в схемах используют и те и другие обозначения. Вот так все просто если разобраться . рис 10Пишу материал по мере свободного времени не забывайте оставлять коментарии

Всего : |

Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]

Источник: https://remont-aud.net/publ/stati/kompjutery_i_perifirija/formirovanie_naprjazhenij_noutbuka_na_primere_platy_la_b102p/31-1-0-393

Пошаговая процедура ремонта материнской платы ноутбука

Кнопка включения ноутбука схема

Материнская плата ноутбука не включается. На примере ASUS A6F рассмотрим общий принцип ремонта и поиска неисправностей, которые препятствуют запуску материнской платы и поможет нам в этом POWER On Sequence (такая страничка имеется во многих схемах ноутбуков).

По диаграмме можно отследить всю процедуру запуска материнской платы, начиная с момента включения питания и вплоть до готовности процессора выполнять инструкции BIOS и определить, на каком из этапов у нас происходит ошибка. В той же pdf-ке к материнской плате, можно найти более детальную схему распределения напряжений:

0-1 Входные напряжения питания A/D_DOCK_IN и AC_BAT_SYS

Первым делом следует убедиться в наличии питающего напряжения 19 вольт на входе материнской платы и, желательно, напряжения с АКБ (аккумуляторной батареи). Отсутствие входных напряжений A/D_DOCK_IN и АС_ВАТ_SYS представляется достаточно частой проблемой и проверку следует начинать с блока питания и разъёма на плате.

Если напряжение на участке (разъём — P-mosfet) отсутствует, то необходимо разорвать связь между сигналами A/D_DOCK_IN и AC_BAT_SYS. Если напряжение со стороны A/D_DOCK_IN появилось, то причина неисправности скрывается дальше и надо разбираться с участком (P-mosfet — нагрузка):

Необходимо исключить вариант короткого замыкания (КЗ) по AC_BAT_SYS (19В). Чаще всего, КЗ заканчивается не дальше, чем на силовых транзисторах в цепях, требующих высокой мощности (питание процессора и видеокарты) или на керамических конденсаторах. В ином случае, необходимо проверять все, к чему прикасается AC_BAT_SYS.

Если КЗ отсутствует, то обращаем внимание на контроллер заряда и P-MOS транзисторы, которые являются своеобразным «разводным мостом» между блоком питания и аккумулятором. Контроллер заряда выполняет функцию переключателя входных напряжений. Для понимания процесса работы, обратимся к datasheet, в котором нас интересует минимальные условия работы контроллера заряда:

Как видно по схеме, контроллер MAX8725 управляет транзисторами P3 и P2, тем самым переключая источники питания между БП и аккумулятором — P3 отвечает за блок питания, а P2 за аккумулятор. Необходимо проверить работоспособность этих транзисторов.

Разберем принцип работы контроллера. При отсутствии основного питания, контроллер автоматически закрывает транзистор P3 (управляющий сигнал PDS) тем самым перекрывая доступ блока питания к материнской плате и открывает транзистор P2 (управляющий сигнал PDL). В таком случае плата работает только от аккумулятора.

Если мы подключим блок питания, контроллер должен перекрыть питание от аккумулятора закрывая P2 и открывая P3, обеспечив питание от внешнего блока питания и зарядку аккумулятора.

При диагностике входного напряжения от сети мы не используем аккумулятор и проверяем только сигнал PDS. В нормальном режиме он должен “подтягиваться” к земле, тем самым открывая P-MOS и пропуская 19В на плату.

Если контроллер неправильно управляет транзистором P3, то необходимо проверить запитан ли сам контроллер. Затем проверяем основные сигналы DCIN, ACIN, ACOK, PDS.

При их отсутствии, меняем контроллер и, на всякий случай, P-MOS транзисторы.

Если проблем с входными напряжениями нет, но плата все равно не работает, переходим к следующему шагу.

1-2 Питание EC контроллера

Embedded Contoller (EC) управляет материнской платой ноутбука, а именно включением/выключением, обработкой ACPI-событий и режимом зарядки аккумулятора. Также эту микросхему ещё называют SMC (System Management Controller) или MIO (Multi Input Output).

Контакты микросхемы EC контроллера программируются под конкретную платформу, а сама программа, как правило, хранится в BIOS или на отдельной FLASH микросхеме.

Вернувшись к схеме запуска материнской платы, первым пунктом видим напряжение +3VA_EC, которое является основным питанием EC контроллера и микросхемы BIOS. Данное напряжение формирует линейный стабилизатор MIC5236YM:

Благодаря присутствию сигнала AC_BAT_SYS, микросхема должна выдать напряжение +3VAO, которое с помощью диагностических джамперов преобразуется в +3VA и +3VA_EC.

+3VA и +3VA_EC питают Embedded контроллер и BIOS, при этом запускается основная логика платы, которая отрабатывается внутри EC контроллера. Основными причинами отсутствия +3VA и +3VA_EC могут служить короткое замыкание внутри компонентов (ЕС, BIOS и т.д.), либо повреждение линейного стабилизатора или его обвязки.

3 Дежурные напряжения (+3VSUS, +5VSUS, +12VSUS)

После того как был запитан EC и он считал свою прошивку, контроллер выдает разрешающий сигнал VSUS_ON для подачи дежурных напряжений (см. пункт 3 последовательности запуска). Этот сигнал поступает на импульсную систему питания во главе которой стоит микросхема TPS51020:

Как видно на схеме, нас интересуют напряжения, отмеченные на схеме зеленым цветом +5VO, +5VSUS, +3VO, +3VSUS. Для того, что бы эти напряжения появились на плате необходимо что бы микросхема была запитана 19В (AC_BAT_SYS) и на входы 9, 10 приходили разрешающие сигналы ENBL1, и ENBL2.

Разрешающие сигналы на платформе A6F формируются из сигналов FORCE_OFF# и VSUS_ON.

В первую очередь нужно обратить внимание на VSUS_ON который выдается EC контроллером, а сигнал FORCE_OFF# рассмотрим чуть позже. Отсутствие сигнала VSUS_ON говорит о том, что либо повреждена прошивка (хранящаяся в BIOS), либо сам EC контроллер.

Если же напряжение ENBL присутствует на плате и TPS51020 запитан, то значит TPS51020 должен формировать +5VO, +5VSUS, +3VO, +3VSUS (проверяется мультиметром на соответствующих контрольных точках).

Если напряжения +5VO, +3VO не формируются, проверяем эти линии на КЗ или заниженное сопротивление. В случае обнаружения КЗ, разрываем цепь и выясняем, каким компонентом оно вызвано.

При отсутствии или после устранения КЗ, снова проверяем напряжения и если их нет, то меняем сам контроллер вместе с транзисторами которыми он управляет.

4 Сигнал VSUS_GD#

На этом этапе контроллер дежурных напряжений сообщает EC контроллеру о том, что дежурные питания в норме. Проблем тут быть не должно.

5 Сигнал RSMRST#

На этом этапе EC контроллер выдает сигнал готовности системы к включению — RSMRST# (resume and reset signal output). Этот сигнал проходит непосредственно между EC и южным мостом. Причиной его отсутствия может быть сам контроллер, южный мост или прошивка EC.

Прежде чем искать аппаратные проблемы, сначала прошейте BIOS. Если результата нет, отпаиваем и поднимаем соответствующую сигналу RSMRST# 105 ножку EC, и проверяем выход сигнала на EC контроллера. Если сигнал все равно не выходит, то меняем контроллер.

Если сигнал выходит, но до южного моста не доходит, то проверяем южный мост и часовой кварц, в худшем случае меняем сам южный мост.

6 Кнопка включения (сигнал PWRSW#_EC)

На этом этапе необходимо проверить прохождение сигнала от кнопки включения до EC контроллера. Для этого меряем напряжение на кнопке и проверяем ее функциональность, если после нажатия напряжение не падает, то проблема в кнопке. Так же можно закоротить этот сигнал с землей и проверить включение.

7 Сигнал включения (сигнал PM_PWRBTN#)

После того как сигнал от кнопки включения попадает на EC, тот в свою очередь передает этот сигнал в виде PM_PWRBTN# на южный мост.

Если южный мост его успешно принял, то следующим этапом является выдача ответа в виде двух сигналов PM_SUSC#, PM_SUSB#, которые, в свою очередь, являются разрешением южного моста EC контроллеру включать основные напряжения платы (если южный мост никак не реагирует на сигнал PM_PWRBTN#, то проблема скрывается в нем).

8-9 Основные напряжения

Каким образом EC контроллер обрабатывает ACPI-события? В предыдущем пункте было сказано, что южный мост отправляет на EC два сигнала PM_SUSC#, PM_SUSB#. Эти сигналы еще называют SLP_S3# и SLP_S4# (отмечено красным блоком на след схеме):

Рассмотрим более подробно ACPI состояния:

  • S0 — Working Status
  • S1 — POS (Power on Suspend)
  • S3 — STR (Suspend to RAM), Memory Working
  • S4 — STD (Suspend to Disk), H.D.D. Working
  • S5 — Soft Off

Так вот, состояние этих сигналов отвечает за ACPI состояние питания на материнской плате:

Мы будем рассматривать случай, когда оба сигнала SLP_S3# и SLP_S4# , соответственно сигналы SUSC_EC#, SUSB_EC# в состоянии HI. То есть, материнская плата находится в режиме S0 (полностью работает, все напряжения присутствуют).

Как видно из последовательности запуска, при появлении сигналов SUSC_EC#, SUSB_EC#, на плате должны появиться следующие напряжения:

  • SUSC_EC#, отвечает за напряжения: +1.8V, +1.5V, +2.5V, +3V, +5V, +1V;
  • SUSB_EC#, отвечает за напряжения: +0.9VS, +1.5VS, +2.5VS, +3VS, +5VS, +12VS

Если хоть одного из этих напряжений не будет, плата не запустится, по этому, проверяем каждую систему питания, начиная от +1.8V, заканчивая +12VS.

Сигналы SUSC_EC#, SUSB_EC#, поступают как на ENABLE отдельных импульсных систем питания (например 1.8V DUAL – питание памяти), так и на целые каскады напряжений преобразовывая уже существующие ранее дежурные напряжения в основные:

10 Питание процессора

Проверяем разрешающий сигнал VRON, который с определенной задержкой поступает на контроллер питания CPU сразу после выдачи сигналов SUSC_EC#, SUSB_EC#.

Далее на CPU должно появится напряжение, если такого не произошло, разбираемся с контроллером питания и его обвязкой. Причин неработоспособности системы питания CPU достаточно много. Основная из них – это выход из строя самого контроллера.

Необходимо проверить минимальные условия работы, для этого не помешает даташит контроллера и сама схема.

11 Включение тактового генератора

После того, как на плате появилось напряжениеCPU, контроллер должен выдать 2 сигнала, это IMVPOK# (Intel Mobile Voltage Positioning – OK) и CLK_EN#. Сигнал IMVPOK# уведомляет EC о том, что питание процессора в норме, а сигнал CLK_EN# включает тактовую генерацию основных логических узлов.

Что бы проверить работоспособность клокера ICS954310 необходимо измерить частоту хотя бы на одном из выводов на котором тактовая частота наименьшая, или такая, которую словит ваш осциллограф. Выберем для этого 12 ножку ICS954310, которая отвечает за выдачу FSLA/USB_48MHz.

Если нет генерации, то проверяем минимальные условия для работы ICS954310. Это кварц 14Mhz и питание 3VS и 3VS_CLK.

12 Завершающий сигнал готовности питания (PWROK)

Если этот сигнал присутствует, и логика EC исправна, то это значит, что все напряжения на плате должны быть включены.

13 PLT_RST#, H_PWRGD

PLT_RST# – сигнал reset для северного моста, H_PWRGD сообщает процессору о том, что питание северного моста в норме. Если возникли проблемы с этими сигналами, то проверяем работоспособность северного и южного моста.

Проверка мостов — тема, довольно обширная. Вкратце, можно сказать, что необходимо проверять сопротивления по всем линиям питания этих мостов и при отклонении от нормы мосты нужно менять.

В принципе, обычной диодной прозвонкой сигнальных линий можно определить неисправный мост, но так как микросхемы выполнены в корпусе BGA, добраться до их выводов практически невозможно.

Не все выводы приходят на элементы, которые легко достать щупом тестера, поэтому используют специальные вспомогательные диагностические платы (например есть диагностические платы для проверки северного моста и каналов памяти).

14 Завершающий этап

H_CPURST# – сигнал reset, выдаваемый северным мостом CPU. После завершения последовательности начинается выполнение инструкций BIOS.

Если считаете статью полезной,
не ленитесь ставить лайки и делиться с друзьями.

Типовые неисправности пультов и как их устранить своими силамиКак удалить Avast! с компьютераNTLDR is missing. Как восстановить загрузчик без установочного диска.Настройка L2TP VPN-сервера на роутерах KeeneticСамостоятельный ремонт LCD мониторов SamsungТелефон самостоятельно совершает звонки без вашего ведома

Источник: https://mdex-nn.ru/page/obshhij-princip-remonta-motherboard-notebook.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.